Showing posts with label Zhivotovsky. Show all posts
Showing posts with label Zhivotovsky. Show all posts

Friday, February 14, 2014

Comprehensive Ethiopian YDNA TMRCA Estimates

Find below a comprehensive list for all central TMRCA estimates calculated from the Plaster thesis for 6 UEPs (look at this post under Interactive Chart of Figure 3.2 for the frequencies of the UEPs). P*(x R1a) & Y*(x BT,A3b2)  are not included due to their minimal frequency and very sporadic distribution. 

There were a total of 5,756 haplotypes reported with the paper for the markers DYS19, DYS388, DYS390, DYS391, DYS392 and DYS393.  30 of those haplotypes belonged to P*(x R1a) & Y*(x BT,A3b2), leaving a total of 5,726 haplotypes. These remaining haplotypes, were then categorized with the criteria of Cultural ID + Generic Language Group* + UEP, any group of haplotypes that conformed to this criteria with N >1 and with a coalescent not equal to 0 (meaning non-identical haplotypes) were processed for their TMRCA and reported, accounting for 5,668 or 98% of the total haplotypes reported for the paper.

The tables are ordered according to the frequencies of the tested UEPs in Ethiopia, i.e. E*(x E1b1a), 3985 Haplotypes  > J,  689 Haplotypes  > A3b2, 601 Haplotypes  > K*(xL,N1c,O2b,P) , 154 Haplotypes > BT*(xDE,JT), 193 Haplotypes  and E1b1a7, 46 Haplotypes .

Note that both the mean TMRCA's for Zhivotovsky (Z-TMRCA) and the pedigree rates (P-TMRCA), some times also known as germline rates, are in units of generations, the suitable length of a generation for the Z-TMRCA is 25 years, while for the P-TMRCA it may range from 28 to 33 years.

If detail of the TMRCA analysis for any of the populations listed below maybe required, go to the table here, and upload the necessary file into the Y TMRCA calculator and filter for the specific population in question.

Tuesday, May 7, 2013

Analyzing YDNA A-M13 lineages in Ethiopian linguistic groups

Similar to the previous analysis of J lineages found in Ethiopia from the Plaster paper, the other prevalent lineage in Ethiopia, A-M13 (formerly known also as A3b2), is also analyzed below. A total of 616 A-M13 lineages were reported in the study, of which ~32% were classified as Semitic speakers, ~40% as Cushitic speakers, ~17% as Omotic speakers and the remainder within the Nilo-Saharan speaking macro-phylum.

Wednesday, May 1, 2013

Analyzing YDNA J lineages in Ethiopian linguistic groups

The extensive YDNA dataset found in the Plaster paper has a total of 691 YDNA lineages that belong to haplogroup J, although there is no more detailed SNP resolution reported for most of these lineages, it is safe to assume, from previous data on Ethiopia, that a vast majority of them would belong to J1-M267. There is a limited set of STR data that accompanies these lineages as well, namely only for the markers; 19, 388, 390, 391, 392 and 393.

According to the report, J lineages are proportionally found higher in Semitic speakers in Ethiopia, ~21% ,followed by Omotic speakers at ~ 12% and Cushitic speakers at ~  8%.  Out of the 691 YDNA J lineages reported, 259 were Semitic speakers, 266 spoke some type of Omotic language and most of the remainder spoke Cushitic languages.

Thursday, February 21, 2013

The Zhivotovsky Multiplier


It is reported that Zhivotovsky's effective mutation rate [1] has the effect of increasing the TMRCA of a lineage, as computed by the use of Microsattelite Genetic Distances[2], by a factor of 3-4 fold relative to TMRCAs computed via mutation rates observed in pedigree and family studies [3].

By utilizing my TMRCA calculating program, I want to explore,
  1. What effect does different marker combinations have on this multiplier ?
  2. What effect does marker size have on this multiplier ?
  3. Is there a variation in this multiplier for different data-sets?

First, to ensure that my program correctly calculates the TMRCA when the Zhivotovsky mutation rate of 0.00069 is applied to all the markers in my database consistently (versus only the marker specific Pedigree mutation rates I have thus far been utilizing), I attempted to replicate the TMRCA computations of the following publication;